Friday, January 20, 2012

NSF Robert Noyce Teacher Scholarship Program

The Robert Noyce Teacher Scholarship Program seeks to encourage talented science, technology, engineering, and mathematics majors and professionals to become K-12 mathematics and science teachers. The Noyce Scholarship Track provides funds to institutions of higher education to support scholarships, stipends, and academic programs for undergraduate STEM majors and post-baccalaureate students holding STEM degrees who earn a teaching credential and commit to teaching in high-need K-12 school districts.

The NSF Teaching Fellowship/Master Teaching Fellowship Trackprovides funding to support STEM professionals who enroll as NSF Teaching Fellows in master's degree programs leading to teacher certification by providing academic courses, professional development, and salary supplements while they are fulfilling a four-year teaching commitment in a high-need school district. This track also supports the development of NSF Master Teaching Fellows by providing professional development and salary supplements for exemplary mathematics and science teachers to become Master Teachers in high-need school districts. Each track supports Capacity Building Projects to develop the capacity for institutions to provide innovative teacher preparation programs to enable increasing numbers of STEM majors and STEM professionals to become effective K-12 mathematics and science teachers and to develop the capacity to prepare Master science and mathematics teachers.

Amount: Varies

Date due: February 27, 2012 (Letter of Intent); March 26, 2012 (Proposal)

For more information, click here.

Tuesday, January 17, 2012

NSF Computing Education for the 21st Century

The Computing Education for the 21st Century (CE21) program aims to build a robust computing research community, a computationally competent 21st century workforce, and a computationally empowered citizenry. In this undertaking, there are three interrelated challenges: the significant underproduction of degrees needed for the computing and computing-related workforce, the longstanding underrepresentation of many segments of our population, and the lack of a presence of computing in K-12. Innovation in information technology (IT) has driven economic growth, underlies many of our recent scientific advances, and ensures our national security; it is not surprising then that predicted IT job growth is very strong. Yet students are not majoring in computing in sufficient numbers. This shortfall is exacerbated by the longstanding underrepresentation of women, persons with disabilities, African Americans, Hispanics, Native Americans and indigenous peoples in computing.

Unlike many of the other STEM (science, technology, engineering, and mathematics) disciplines, computing has not developed a robust research base on the teaching and learning of its fundamental concepts and skills. That research base must be built and it must be used in providing all students with rigorous academic curricula that cover computational concepts and skills, and the breadth of application and potential of computing. Providing access to rigorous, academic computing in K-12 will require an unprecedented effort to develop curriculum and materials and to prepare teachers.CE21 thus supports efforts in three tracks:

Computing Education Research (CER) proposals will aim to develop a research base for computing education. Projects may conduct basic research on the teaching and learning of computational competencies; they may design, develop, test, validate, and refine materials, measurement tools, and methods for teaching in specific contexts; and/or they may implement promising small-scale interventions in order to study their efficacy with particular groups. Efforts can focus on computational thinking as taught in computing courses or infused across the curriculum, they can target students or their teachers in informal or formal educational settings, or they can address any level within the K-16 pipeline, from elementary school through high school and college.

CS 10K proposals will aim to develop the knowledge base and partnerships needed to catalyze the CS 10K Project. The CS 10K Project aims to have rigorous, academic curricula incorporated into computing courses in 10,000 high schools, taught by 10,000 well-trained teachers. CS 10K proposals can address a wide range of needed activities, including the development of course materials, pedagogy, and methods courses, as well as professional development and ongoing support for teachers, approaches to scaling, best practices for increasing the participation of students from underrepresented groups, and strategies for building K-12, university, and community partnerships.

Broadening Participation (BP) proposals will aim to develop and assess novel interventions that contribute to our knowledge base on the effective teaching and learning of computing for students from the underrepresented groups: women, persons with disabilities, African Americans, Hispanics, Native Americans and indigenous peoples. Proposed interventions should be designed to engage and retain students from these groups and, at the same time, to increase their knowledge of computational thinking concepts and skills.

Proposers are encouraged to leverage the resources provided by the existing BPC-A Alliances and to develop interventions that, if proven successful, could be implemented within a BPC-A Alliance. For additional information on the Alliances, see http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503593&org=NSF. In aggregate, CE21 projects will contribute to our understanding of how diverse student populations are engaged and retained in computing, learn its fundamental concepts, and develop computational competencies that position them to contribute to an increasingly computationally empowered workforce.

Amount: $200,000 - $10m

Date due: April 9, 2012

For more information, click here.